Field Stop Trench IGBT

650 V, 60 A

Description

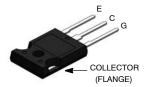
Using novel field stop IGBT technology, ON semiconductor's new series of field stop 4th generation IGBTs offer the optimum performance for solar inverter, UPS, welder, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Features

- Max Junction Temperature 175°C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.6 \text{ V (Typ.)}$ @ $I_C = 60 \text{ A}$
- 100% of the Parts Tested for ILM(1)
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- This Device is Pb-Free and is RoHS Compliant

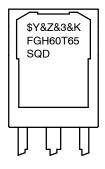
Applications

• Solar Inverter, UPS, Welder, Telecom, ESS, PFC



ON Semiconductor®

www.onsemi.com


V _{CES}	I _C
650 V	60 A

TO-247-3LD CASE 340CH

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code = Numeric Date Code &3

= Lot Code

FGH60T65SQD = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS

Symbol	Description		FGH60T65SQD-F155	Unit	
V _{CES}	Collector to Emitter Voltage		650	V	
V_{GES}	Gate to Emitter Voltage		±20	V	
	Transient Gate to Emitter Voltage		±30	V	
I _C	Collector Current	@ Tc < 25°C	120	А	
		@ Tc < 100°C	60		
I _{LM} (Note 1)	Pulsed Collector Current	@ Tc < 25°C	240	Α	
I _{CM} (Note 2)	Pulsed Collector Current		240	Α	
I _F	Diode Forward Current	@ Tc < 25°C	60	Α	
	Diode Forward Current	@ Tc < 100°C	30	Α	
I _{FM} (Note 2)	Repetitive Forward Surge Current		240	Α	
P_{D}	Maximum Power Dissipation	@ Tc < 25°C	333	W	
		@ Tc < 100°C	167	W	
TJ	Operating Junction Temperature Range		-55 to +175	°C	
T _{STG}	Storage Temperature Range		−55 to +175	°C	
T _L	Maximum Lead Temp. For soldering Purposes, 18" from case for 5 sec		300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $V_{CC} = 400 \text{ V}$, $V_{GE} = 15 \text{ V}$, $I_{C} = 240 \text{ A}$, $R_{G} = 21 \Omega$, Inductive Load.

2. Repetitive rating: Pulse width limited by max. junction temperature.

THERMAL CHARACTERISTICS

Symbol	Parameter	FGH60T65SQD-F155	Unit
R _{θJC} (IGBT)	Thermal Resistance, Junction to Case, Max.	0.45	°C/W
R _{θJC} (Diode)	Thermal Resistance, Junction to Case, Max.	1.25	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH60T65SQD-F155	FGH60T65SQD	TO-247-3LD	Tube	-	_	30

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS	•		•		
BV _{CES}	Collector to Emitter Breakdown Voltage	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$	650	_	_	V
$\Delta BV_{CES} / \Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	I _C = 1 mA, Reference to 25°C	-	0.6	_	V/°C
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V	_	-	250	μΑ
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0 V	_	-	±400	nA
ON CHARACTE	RISTICS			•	-	
V _{GE(th)}	G-E Threshold Voltage	I_C = 60 mA, V_{CE} = V_{GE}	2.6	4.5	6.4	V
		I _C = 60 A, V _{GE} = 15 V	-	1.6	2.1	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 60 A V _{GE} = 15 V, T _C = 175°C	-	1.92	-	٧
DYNAMIC CHA	RACTERISTICS			•	•	
C _{ies}	Input Capacitance		_	3813	-	pF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ $f = 1 \text{MHz}$	-	90	_	pF
C _{res}	Reverse Transfer Capacitance		-	13	-	pF
SWITCHING CH	IARACTERISTICS	•		•		
t _{d(on)}	Turn-On Delay Time	V_{CC} = 400 V, I_{C} = 15 A, R_{G} = 4.7 Ω , V_{GE} = 15 V, Inductive Load, T_{C} = 25°C	_	20.8	_	ns
t _r	Rise Time		-	8	-	ns
t _{d(off)}	Turn-Off Delay Time	7 0	_	102	-	ns
t _f	Fall Time	1	-	11.2	_	ns
E _{on}	Turn-On Switching Loss	1	-	227	_	μJ
E _{off}	Turn-Off Switching Loss	7	-	100	-	μJ
E _{ts}	Total Switching Loss		-	327	_	μJ
t _{d(on)}	Turn-On Delay Time	V_{CC} = 400 V, I_{C} = 30 A, R_{G} = 4.7 Ω , V_{GE} = 15 V,	-	21.6	-	ns
t _r	Rise Time	Inductive Load, $T_C = 25^{\circ}C$	-	14.4	-	ns
t _{d(off)}	Turn-Off Delay Time	1	-	97.6	_	ns
t _f	Fall Time	7	-	4.8	-	ns
E _{on}	Turn-On Switching Loss		-	585	_	μJ
E _{off}	Turn-Off Switching Loss		-	167	_	μJ
E _{ts}	Total Switching Loss		-	752	_	μJ
$T_{d(on)}$	Turn-On Delay Time	V_{CC} = 400 V, I_{C} = 15 A, P_{G} = 4.7 Ω , V_{GE} = 15 V,	-	19.2	-	ns
T _r	Rise Time	Inductive Load, T _C = 175°C	-	9.6	_	ns
$T_{d(off)}$	Turn-Off Delay Time		-	115	-	ns
T _f	Fall Time]	-	11.2	-	ns
E _{on}	Turn-On Switching Loss]	-	448	-	μJ
E _{off}	Turn-Off Switching Loss]	-	199	-	μJ
E _{ts}	Total Switching Loss	┥	_	647	_	μJ

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit			
SWITCHING C	WITCHING CHARACTERISTICS								
T _{d(on)}	Turn-On Delay Time	$V_{CC} = 400 \text{ V}, I_C = 30 \text{ A}, R_G = 4.7 \Omega, V_{GE} = 15 \text{ V},$	-	20.8	-	ns			
T _r	Rise Time	Inductive Load, T _C = 175°C	-	16	_	ns			
T _{d(off)}	Turn-Off Delay Time		-	106	_	ns			
T _f	Fall Time		1	8.8	_	ns			
E _{on}	Turn-On Switching Loss		-	942	-	μJ			
E _{off}	Turn-Off Switching Loss		-	386	-	μJ			
E _{ts}	Total Switching Loss		-	1328	-	μJ			
Q_g	Total Gate Charge	V _{CE} = 400 V, I _C = 60 A, V _{GE} = 15 V	-	79	-	nC			
Q _{ge}	Gate to Emitter Charge		-	22	-	nC			
Q _{gc}	Gate to Collector Charge		-	27	_	nC			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS OF THE DIODE ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
V_{FM}	Diode Forward Voltage	I _F = 30 A	T _C = 25°C	-	2.3	2.7	V
			T _C = 175°C	-	1.9	-	
E _{rec}	Reverse Recovery Energy	$I_F = 30 \text{ A},$ $dI_F/dt = 200 \text{ A}/\mu\text{s}$	T _C = 175°C	-	50	-	μJ
T _{rr}	Diode Reverse Recovery Time	αιρ/αι = 200 Αγμο	T _C = 25°C	-	34.6	-	ns
			T _C = 175°C	-	197	-	
Q _{rr}	Diode Reverse Recovery Charge]	T _C = 25°C	-	58.6	-	nC
			T _C = 175°C	-	810	-	

TYPICAL CHARACTERISTICS

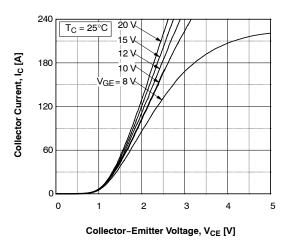


Figure 1. Typical Output Characteristics

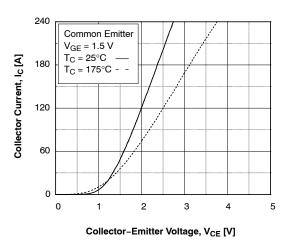


Figure 3. Typical Saturation Voltage Characteristics

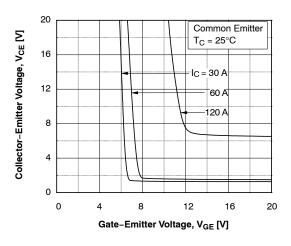


Figure 5. Saturation Voltage vs. V_{GE}

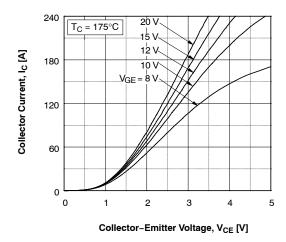


Figure 2. Typical Output Characteristics

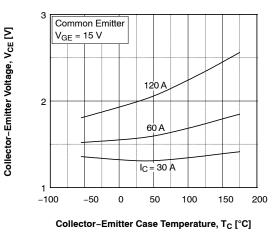


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

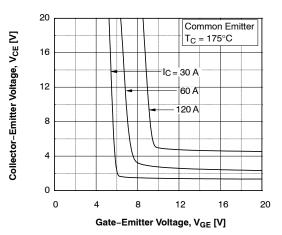


Figure 6. Saturation Voltage vs. V_{GE}

TYPICAL CHARACTERISTICS (Continued)

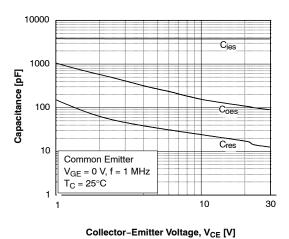


Figure 7. Capacitance Characteristics

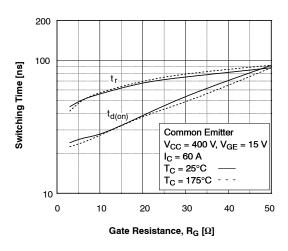


Figure 9. Turn-on Characteristics vs.
Gate Resistance

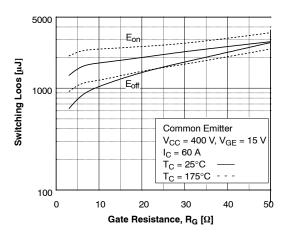


Figure 11. Switching Loos vs.

Gate Resistance

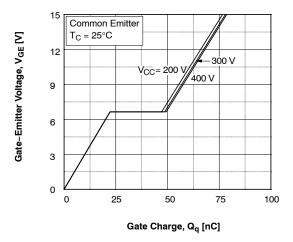


Figure 8. Gate Charge Characteristics

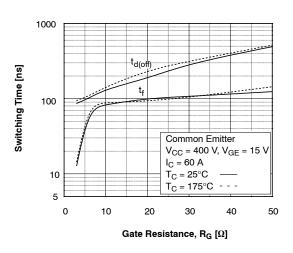


Figure 10. Turn-off Characteristics vs. Gate Resistance

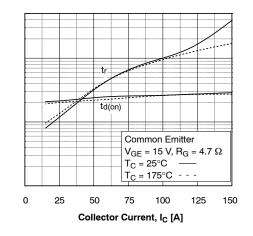


Figure 12. Turn-on Characteristics vs.
Collector Current

Switching Time [ns]

TYPICAL CHARACTERISTICS (Continued)

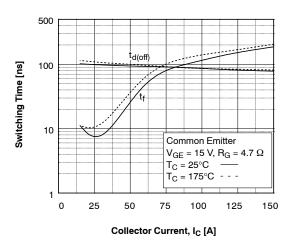


Figure 13. Turn-off Characteristics vs.
Collector Current

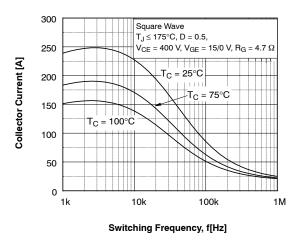


Figure 15. Load Current vs. Frequency

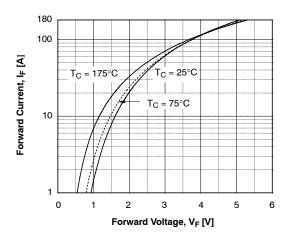


Figure 17. Forward Characteristics

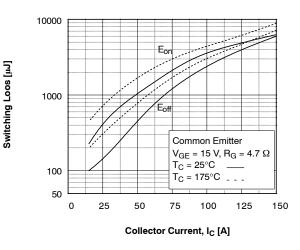


Figure 14. Switching Loos vs. Collector Current

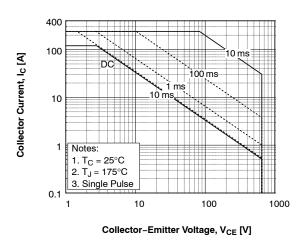


Figure 16. SOA Characteristics

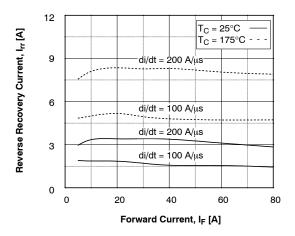
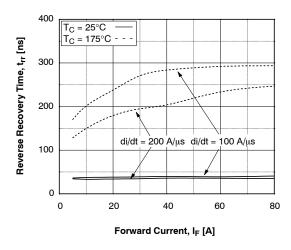



Figure 18. Reverse Recovery Current

TYPICAL CHARACTERISTICS (Continued)

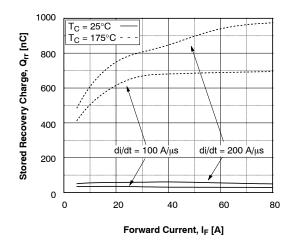


Figure 19. Reverse Recovery Time

Figure 20. Stored Charge

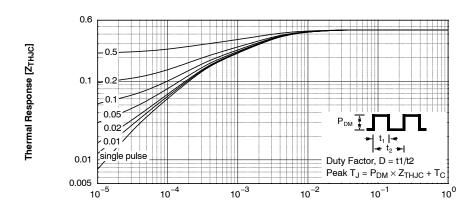


Figure 21. Transient Thermal Impedance of IGBT

Rectangular Pulse Duration [sec]

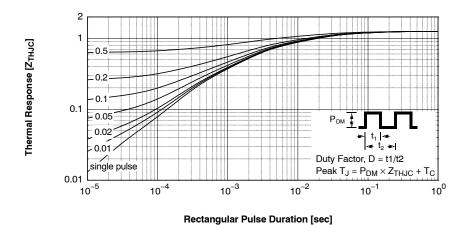
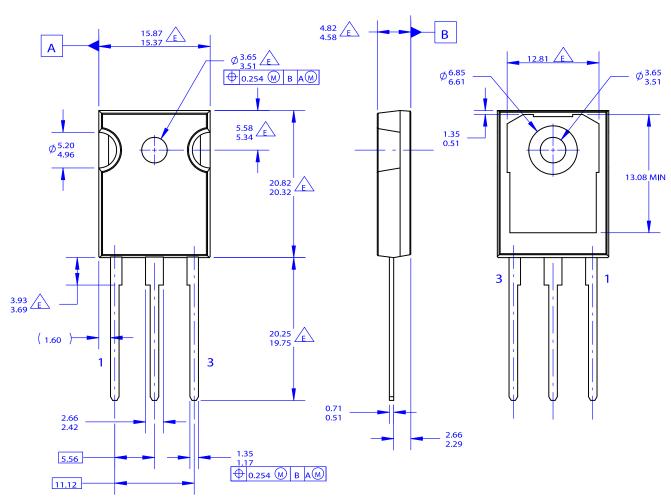



Figure 22. Transient Thermal Impedance of Diode

PACKAGE DIMENSIONS

TO-247-3LD CASE 340CH ISSUE O

NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor anakes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices or me

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative