TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 - Supply Voltage Range . . . 1.8 V to 3.6 V - Rail-to-Rail Input/Output - High Bandwidth . . . 8 MHz - High Slew Rate . . . 4.8 V/μs - V_{ICR} Exceeds Rails . . . -0.2 V to V_{DD}+ 0.2 - Supply Current . . . 650 μA/Channel - Input Noise Voltage . . . 9 nV/√Hz at 10 kHz - Specified Temperature Range: 0°C to 70°C... Commercial Grade -40°C to 125°C... Industrial Grade - Ultrasmall Packaging - Universal Operational Amplifier EVM #### description The TLV278x single supply operational amplifiers provide rail-to-rail input and output capability. The TLV278x takes the minimum operating supply voltage down to 1.8 V over the extended industrial temperature range (–40°C to 125°C) while adding #### **Operational Amplifier** #### **DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE** the rail-to-rail output swing feature. The TLV278x also provides 8 MHz bandwidth from only 650 μ A of supply current. The maximum recommended supply voltage is 3.6 V, which allows the devices to be operated from (\pm 1.8 V supplies down to \pm 0.9 V) two rechargeable cells. The combination of wide bandwidth, low noise, and low distortion makes it ideal for high speed and high resolution data converter applications. All members are available in PDIP, SOIC, and the newer, smaller SOT-23 (singles), MSOP (duals), and TSSOP (quads). #### **FAMILY PACKAGE TABLE** | DEVICE | V _{DD}
[V] | V _{IO}
[μV] | I _{DD} /ch
[μΑ] | I _{IB}
[pA] | GBW
[MHz] | SLEW RATE
[V/μs] | V _{n, 1 <u>kH</u>z
[nV/√Hz]} | I _O
[mA] | SHUTDOWN | RAIL-TO-
RAIL | |------------|------------------------|-------------------------|-----------------------------|-------------------------|--------------|---------------------|---|------------------------|----------|------------------| | TLV278x(A) | 1.8-3.6 | 250 | 650 | 2.5 | 8 | 5 | 18 | 10 | Υ | I/O | | TLV276x(A) | 1.8-3.6 | 550 | 20 | 3 | 0.5 | 0.23 | 95 | 5 | Υ | I/O | | TLV246x(A) | 2.7-6 | 150 | 550 | 1300 | 6.4 | 1.6 | 11 | 25 | Υ | I/O | | TLV247x(A) | 2.7–6 | 250 | 600 | 2.5 | 2.8 | 1.5 | 15 | 20 | Υ | I/O | | TLV244x(A) | 2.7–10 | 300 | 750 | 1 | 1.81 | 1.4 | 16 | 2 | _ | 0 | | TLV277x(A) | 2.5-5.5 | 360 | 1000 | 2 | 5.1 | 10.5 | 17 | 6 | Y | 0 | Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### TLV2780 and TLV2781 AVAILABLE OPTIONS(1) | | | | PACKAGED DEVICES | | | | | | | |----------------|--------------------------------|--------------------------|----------------------------|--------------|------------------------|--|--|--|--| | TA | V _{IO} max
AT 25°C | SMALL OUTLINE | SOT-23 | PLASTIC DIP | | | | | | | | A1 23 C | (D)† | (DBV)‡ | SYMBOL | (P) | | | | | | 0°C to 70°C | 3000 μV | TLV2780CD
TLV2781CD | TLV2780CDBV
TLV2781CDBV | VASC
VATC | | | | | | | -40°C to 125°C | 3000 μV | TLV2780ID
TLV2781ID | TLV2780IDBV
TLV2781IDBV | VASI
VATI | TLV2780IP
TLV2781IP | | | | | | -40 0 10 125 0 | 2000 μV | TLV2780AID
TLV2781AID | _
_ | _ | | | | | | [†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2780CDR). #### TLV2782 and TLV2783 AVAILABLE OPTIONS(1) | | | | PACKAGED DEVICES | | | | | | | | | |----------------|--------------------------------|--------------------------|------------------|--------------|------------------|--------------|----------------|----------------|--|--|--| | TA | V _{IO} max
AT 25°C | SMALL | | MSOP | | | | | | | | | | | OUTLINE†
(D) | (DGK)† | SYMBOL | (DGS)† | SYMBOL | DIP
(N) | DIP
(P) | | | | | 0°C to 70°C | 3000 μV | TLV2782CD
TLV2783CD | TLV2782CDGK
— | xxTIADL
— | —
TLV2783CDGS | —
xxTIADN | _
_ | _
_ | | | | | 40°C to 425°C | 3000 μV | TLV2782ID
TLV2783ID | TLV2782IDGK
— | xxTIADM
— | —
TLV2783IDGS | —
xxTIADO | —
TLV2783IN | TLV2782IP
— | | | | | -40°C to 125°C | 2000 μV | TLV2782AID
TLV2783AID | _
_ | _
_ | _
_ | | _
_ | _
_ | | | | This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2782CDR). #### TLV2784 and TLV2785 AVAILABLE OPTIONS(1) | | ., | PACKAGED DEVICES | | | | | | | | |----------------|--------------------------------|--------------------------|------------------------|----------------------------|--|--|--|--|--| | T _A | V _{IO} max
AT 25°C | SMALL OUTLINE
(D) | PLASTIC DIP
(N) | TSSOP†
(PW) | | | | | | | 0°C to 70°C | 3000 μV | TLV2784CD
TLV2785CD | _
_ | TLV2784CPW
TLV2785CPW | | | | | | | -40°C to 125°C | 3000 μV | TLV2784ID
TLV2785ID | TLV2784IN
TLV2785IN | TLV2784IPW
TLV2785IPW | | | | | | | -40 C to 125 C | 2000 μV | TLV2784AID
TLV2785AID | | TLV2784AIPW
TLV2785AIPW | | | | | | [†] This package is available taped and reeled. To order this packaging option, add an **R** suffix to the part number (e.g., TLV2784CDR). 1. For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. [‡] This package is only available taped and reeled. For standard quantities (3,000 pieces per reel), add an **R** suffix (i.e., TLV2780CDBVR). For smaller quantities (250 pieces per mini-reel), add a **T** suffix to the part number (e.g. TLV2780CDBVT). # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### **TLV278x PACKAGE PINOUTS** NC - No internal connection # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{DD} (see Note 1) | | 4 V | |--|---------------------|------------------------------| | Differential input voltage, V _{ID} | | ±V _{DD} | | Input current, I _I (any input) | | ± 10 mA | | Output current, IO | | ± 10 mA | | Continuous total power dissipation | | See Dissipation Rating Table | | Operating free-air temperature range, T _A : | C-suffix | 0°C to 70°C | | | I-suffix | 40°C to 125°C | | Maximum junction temperature, T _J | | 150°C | | Storage temperature range, T _{stg} | | 65°C to 150°C | | Lead temperature 1,6 mm (1/16 inch) from | case for 10 seconds | 260°C | #### NOTE 1: All voltage values, except differential voltages, are with respect to GND. #### **DISSIPATION RATING TABLE** | PACKAGE | (∘C/M)
⊝JC | [⊝] JA
(°C/W) | $T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ Power rating | T _A = 125°C
POWER RATING | |------------|---------------|---------------------------|--|--| | D (8) | 38.3 | 176 | 710 mW | 142 mW | | D (14) | 26.9 | 122.3 | 1022 mW | 204.4 mW | | D (16) | 25.7 | 114.7 | 1090 mW | 218 mW | | DBV (5) | 55 | 324.1 | 385 mW | 77.1 mW | | DBV (6) | 55 | 294.3 | 425 mW | 85 mW | | DGK (8) | 54.2 | 259.9 | 481 mW | 96.2 mW | | DGS (10) | 54.1 | 257.7 | 485 mW | 97 mW | | N (14, 16) | 32 | 78 | 1600 mW | 320.5 mW | | P (8) | 41 | 104 | 1200 mW | 240.4 mW | | PW (14) | 29.3 | 173.6 | 720 mW | 144 mW | | PW (16) | 28.7 | 161.4 | 774 mW | 154.9 mW | #### recommended operating conditions | | | | | MIN | MAX | UNIT | |--|---------------|--|--|---------------------|----------------------|------| | Overal continue V | Single supply | | | 1.8 | 3.6 | ., | | Supply voltage, V _{DD} | Split s | upply | | ±0.9 | ±1.8 | V | | Common-mode input voltage range, VICR | | | | -0.2 | V _{DD} +0.2 | V | | | C-suffix | | | 0 | 70 | °C | | Operating free-air temperature, T _A | I-suffix | I-suffix | | | 125 | -0 | | | ., | V _{DD} < 2.7 V | | 0.75V _{DD} | | | | Shutdown on/off voltage level‡ | VIH | $V_{DD} = 2.7 \text{ to } 3.6 \text{ V}$ | | 2 | | V | | | VIL | | | | 0.6 | | [‡] Relative to GND. [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 # electrical characteristics at specified free-air temperature, V_{DD} = 1.8 V, 2.7 V (unless otherwise noted) #### dc performance | | PARAMETER | TEST CO | NDITIONS | T _A † | MIN | TYP | MAX | UNIT | |------|---|--|--|------------------|-----|------|------|----------| | | | | TI \ /070; | 25°C | | 250 | 3000 | | | | land effect with me | | TLV278x | Full range | | | 4500 | l l | | VIO | Input offset voltage | $V_O = V_{DD}/2$,
$R_L = 2 k\Omega$, | TI \ (0.70 A | 25°C | | 250 | 2000 | μV | | | | $R_S = 50 \Omega$ | TLV278xA | Full range | | |
3000 | | | αΛΙΟ | Temperature coefficient of input offset voltage | 0 1 | | | | 8 | | μV/°C | | | | $V_{IC} = 0 \text{ to } V_{DD},$ $R_S = 50 \Omega$ | \/ 4.0\/ | 25°C | 50 | 76 | | | | | | | $V_{DD} = 1.8 V$ | Full range | 50 | | | | | CMDD | | | V _{DD} = 2.7 V/ 3.6 V | 25°C | 55 | 80 | | 40 | | CMRR | Common-mode rejection ratio | | | Full range | 50 | | | dB | | | | $V_{IC} = 1.2 \text{ V to } V_{DD}$ | V 07V/26V | 25°C | 70 | 100 | | | | | | $R_S = 50 \Omega$ | $V_{DD} = 2.7 \text{ V/ } 3.6 \text{ V}$ | Full range | 70 | | | | | | | | | 25°C | 200 | 600 | | | | ١. | Large-signal differential voltage | $R_L = 2 k\Omega$,
$V_O(PP) = 1 V$ | V _{DD} = 1.8 V | Full range | 50 | | | ļ ,,, ,, | | AVD | amplification | | 0.7.1/0.0.1/ | 25°C | 200 | 1000 | | V/mV | | | | | $V_{DD} = 2.7 \text{ V/ } 3.6 \text{ V}$ | Full range | 70 | | | | [†] Full range is 0°C to 70°C for the C-suffix and –40°C to 125°C for the I-suffix. If not specified, full range is –40°C to 125°C. #### input characteristics | | PARAMETER | TEST C | ONDITIONS | T _A † | MIN | TYP | MAX | UNIT | |--------------------------------------|-------------------------------|--------------------------------------|------------|------------------|-----|------|-----|------| | I _{IO} Input offset current | | | | 25°C | | 2.5 | 15 | | | | | TLV278xC | Full range | | | 100 | рА | | | | | $V_O = V_{DD}/2,$ $R_L = 2 k\Omega,$ | TLV278xI | Full range | | | 300 | | | | | $R_{S} = 50 \Omega$ | | 25°C | | 2.5 | 15 | | | I _{IB} | Input bias current | 11.5 - 00 22 | TLV278xC | Full range | | | 100 | pА | | | | | TLV278xI | Full range | | | 300 | | | r _{i(d)} | Differential input resistance | | | 25°C | | 1000 | | GΩ | | C _{i(c)} | Common-mode input capacitance | f = 1 kHz | | 25°C | | 19 | | pF | [†] Full range is 0°C to 70°C for the C-suffix and -40°C to 125°C for the I-suffix. If not specified, full range is -40°C to 125°C. # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 # electrical characteristics at specified free-air temperature, V_{DD} = 1.8 V, 2.7 V (unless otherwise noted) (continued) ### output characteristics | | PARAMETER | TEST CON | DITIONS | T _A † | MIN | TYP | MAX | UNIT | | |----------|------------------------------|--------------------------|--------------------------|------------------|------|------|-----|------|--| | | | | V 4.0.V | 25°C | 1.7 | 1.77 | | | | | | | | $V_{DD} = 1.8 V$ | Full range | 1.63 | | | | | | | | $I_{OH} = -1 \text{ mA}$ | V 07V | 25°C | 2.6 | 2.68 | | | | | | | | $V_{DD} = 2.7 V$ | Full range | 2.6 | | | | | | \/ - · · | High lavel autout valence | | $V_{DD} = 3.6 \text{ V}$ | 25°C | | 3.58 | | | | | VOH | High-level output voltage | | V 4.9.V | 25°C | 1.5 | 1.55 | | V | | | | | | $V_{DD} = 1.8 V$ | Full range | 1.46 | | | | | | | | $I_{OH} = -5 \text{ mA}$ | \/ 07\/ | 25°C | 2.5 | 2.55 | | | | | | | | $V_{DD} = 2.7 V$ | Full range | 2.45 | | | | | | | | | $V_{DD} = 3.6 \text{ V}$ | 25°C | | 3.55 | | | | | | | I _{OL} = 1 mA | | 25°C | | | 70 | | | | | | | | Full range | | | 80 | | | | \/~. | Low-level output voltage | | V _{DD} = 1.8 V | 25°C | | 180 | 240 | mV | | | VOL | Low-level output voltage | I _{OL} = 5 mA | vDD = 1.6 v | Full range | | | 290 | | | | | | | \/== - 2.7.\/ | 25°C | | 120 | 170 | | | | | | | $V_{DD} = 2.7 V$ | Full range | | | 200 | | | | | | V _{DD} = 1.8 V, | Positive rail | | | 10 | | | | | | Output ourrent | VO = 0.5 V from | Negative rail | 25°C | | 15 | | A | | | lO | Output current | $V_{DD} = 2.7 V,$ | Positive rail | 25°C | | 17 | | mA | | | | | VO = 0.5 V from | Negative rail | | | 23 | | | | | | | Coursing | $V_{DD} = 1.8 \text{ V}$ | | | 13 | | | | | loo | Short-circuit output current | Sourcing | $V_{DD} = 2.7 V$ | 25°C | | 35 | | A | | | los | Short-orcuit output current | Sinking | $V_{DD} = 1.8 \text{ V}$ | 25 0 | | 21 | | mA | | | | | Sirikiriy | $V_{DD} = 2.7 V$ | | | 45 | | | | [†] Full range is 0°C to 70°C for the C-suffix and -40°C to 125°C for the I-suffix. If not specified, full range is -40°C to 125°C. #### power supply | PARAMETER | | TEST COND | TEST CONDITIONS | | | TYP | MAX | UNIT | |-----------|---|---|------------------------|------------|----|-----|-----|------| | | Owner to a support (a see also a sell) | V V /0 | CUDN V | 25°C | | 650 | 770 | | | IDD | Supply current (per channel) | $V_O = V_{DD}/2,$ | SHDN = V _{DD} | Full range | | | 820 | μΑ | | | $V_{DD} = 1.8 \text{ V to } 2.7 \text{ V},$ | No load, | 25°C | 60 | 75 | | | | | | | $V_{IC} = V_{DD}/2$ | | Full range | 58 | | | | | | Supply voltage rejection ratio | $V_{DD} = 2.7 \text{ V to } 3.6 \text{ V},$ | No load, | 25°C | 75 | 90 | | -ID | | ksvr | $(\Delta V_{DD} / \Delta V_{IO})$ | $V_{IC} = V_{DD}/2$ | | Full range | 70 | | | dB | | | | $V_{DD} = 1.8 \text{ V to } 3.6 \text{ V},$ | No load, | 25°C | 65 | 80 | | | | | | $V_{IC} = V_{DD}/2$ | | Full range | 60 | | | | [†] Full range is 0°C to 70°C for the C-suffix and -40°C to 125°C for the I-suffix. If not specified, full range is -40°C to 125°C. # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 # electrical characteristics at specified free-air temperature, V_{DD} = 1.8 V, 2.7 V (unless otherwise noted) (continued) #### dynamic performance | | PARAMETER | TEST CONDIT | TONS | T _A † | MIN | TYP | MAX | UNIT | | |----------------|----------------------------------|---|-------------------------|------------------|------|-----|-----|-------|--| | UGBW | Unity gain bandwidth | $R_L = 2 k\Omega$, | C _L = 25 pF | 25°C | | 8 | | MHz | | | | | | V 40V | 25°C | 3.3 | 4.3 | | | | | | | | $V_{DD} = 1.8 V$ | Full range | 3.1 | | | | | | SR+ | Desitive elevante et unity sein | $V_{O(PP)} = 1 \text{ V},$ $R_{L} = 2 \text{ k}\Omega,$ | V 27V | 25°C | 3.8 | 4.8 | | | | | SK+ | Positive slew rate at unity gain | $C_L = 50 \text{ pF}$ | $V_{DD} = 2.7 V$ | Full range | 3.5 | | | | | | | | | V _{DD} = 3.6 V | 25°C | 4 | 5 | | | | | | | | | Full range | 3.6 | | | 1//// | | | | | | V 19V | 25°C | 2.1 | 2.8 | | V/μs | | | | | $V_{O(PP)} = 1 \text{ V},$ $R_{L} = 2 \text{ k}\Omega,$ $C_{L} = 50 \text{ pF}$ | $V_{DD} = 1.8 V$ | Full range | 1.89 | | | | | | SR- | Negative slew rate at unity gain | | V _{DD} = 2.7 V | 25°C | 2.2 | 2.8 | | | | | SK- | Negative siew rate at unity gain | | | Full range | 1.97 | | | | | | | | | V _{DD} = 3.6 V | 25°C | 3.5 | 4.2 | | | | | | | | VDD = 3.6 V | Full range | 3.4 | | | | | | φm | Phase margin | $R_L = 2 k\Omega$ | C _L = 25 pF | 25°C | | 58° | | | | | | Gain margin | = 2 KS2, | CL = 23 pr | 25 0 | | 8 | | dB | | | | | V _{DD} = 1.8 V,
V(STEP)PP = 1 V, | 0.1% | | | 1.7 | | | | | | Sattling time | AV = -1,
$C_L = 10 \text{ pF}$, $R_L = 2 \text{ k}\Omega$ | 0.01% | 25°C | | 2.8 | | 116 | | | t _S | Settling time | V _{DD} = 2.7 V,
V(STEP)PP = 1 V, | 0.1% | 250 | | 1.7 | | μs | | | | | AV = -1,
$CL = 10 \text{ pF}$, $RL = 2 \text{ k}\Omega$ | 0.01% | | | 2.4 | | | | [†] Full range is 0°C to 70°C for the C-suffix and –40°C to 125°C for the I-suffix. If not specified, full range is –40°C to 125°C. #### noise/distortion performance | | PARAMETER | TEST CONDITI | TEST CONDITIONS | | | TYP | MAX | UNIT | |----------------|--------------------------------------|-------------------------|--------------------|------|-------|--------|--------------------|--------------------| | | | $V_{O(PP)} = V_{DD}/2,$ | A _V = 1 | | | 0.055% | | | | THD + N | Total harmonic distortion plus noise | $R_L = 2 k\Omega$, | $A_{V} = 10$ | | 0.08% | | | | | | | f = 10 kHz | $A_V = 100$ | 0500 | | 0.45% | | | | V | Emphysical transfer and the second | f = 1 kHz | 25°C | | 18 | | nV/√ Hz | | | V _n | Equivalent input noise voltage | f = 10 kHz | | | | 9 | | nv/√Hz | | In | Equivalent input noise current | f = 1 kHz | | | | 0.9 | | fA/√ Hz | #### shutdown characteristics | | PARAMETER | TEST CONDITIONS | T _A † | MIN | TYP | MAX | UNIT | |-----------|--|-------------------|------------------|-----|-----|------|------| | 1 | Supply current, per channel in shutdown mode | SHDN = 0 V | 25°C | | 900 | 1400 | ^ | | IDD(SHDN) | (TLV2780, TLV2783, TLV2785) | SHDIN = 0 V | Full range | | | 1700 | nA | | t(on) | Amplifier turnon time‡ | $R_L = 2 k\Omega$ | 0500 | | 800 | · | | | t(off) | Amplifier turnoff time [‡] | $R_L = 2 k\Omega$ | 25°C | | 200 | | ns | [†] Full range is 0°C to 70°C for the C-suffix and -40°C to 125°C for the I-suffix. If not specified, full range is -40°C to 125°C. Disable time and enable time are defined as the interval between application of the logic signal to SHDN and the point at which the supply current has reached half its final value. # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### **TYPICAL CHARACTERISTICS** ### **Table of Graphs** | | | | FIGURE | |--------------------|--|------------------------------|--------| | V _{IO} | Input offset voltage | vs Common-mode input voltage | 1, 2 | | CMRR | Common-mode rejection ratio | vs Frequency | 3 | | VOH | High-level output voltage | vs High-level output current | 4, 6 | | V _{OL} | Low-level output voltage | vs Low-level output current | 5, 7 | | V _{O(PP)} | Maximum peak-to-peak output voltage | vs Frequency | 8 | | Z _O | Output impedance | vs Frequency | 9 | | I _{DD} | Supply current | vs Supply voltage | 10 | | I_{DD} | Supply current | vs Free-air
temperature | 11 | | PSRR | Power supply rejection ratio | vs Frequency | 12 | | AVD | Differential voltage amplification & phase | vs Frequency | 13 | | | Gain-bandwidth product | vs Free-air temperature | 14 | | CD | Classinata | vs Supply voltage | 15 | | SR | Slew rate | vs Free-air temperature | 16, 17 | | фm | Phase margin | vs Load capacitance | 18 | | Vn | Equivalent input noise voltage | vs Frequency | 19 | | | Voltage-follower large-signal pulse response | vs Time | 20 | | | Voltage-follower small-signal pulse response | vs Time | 21 | | | Inverting large-signal pulse response | vs Time | 22 | | | Inverting small-signal pulse response | vs Time | 23 | | | Crosstalk | vs Frequency | 24 | | | Shutdown forward & reverse isolation | vs Frequency | 25 | | IDD(SHDN) | Shutdown supply current | vs Free-air temperature | 26 | | IDD(SHDN) | Shutdown supply current | vs Supply voltage | 27 | | IDD(SHDN) | Shutdown supply current/output voltage | vs Time | 28 | SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### TYPICAL CHARACTERISTICS **INPUT OFFSET VOLTAGE** **COMMON-MODE INPUT VOLTAGE** 100 V_{DD}=2.7 V 50 T_A=25 °C ₹. C Voltage -50 -100 - Input Offset -150 -200 -250 -300 -350 0.6 1 1.4 1.8 2.2 V_{ICR} - Common-Mode Input Voltage - V Figure 1 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 1.8 V_{DD}=1.8 V 1.6 - High-Level Output Voltage - V 1.2 T_A = 125°C 1.0 = 70°C 0.8 T_A = 25°C 0.6 $T_A = 0^{\circ}C$ $T_A = -40^{\circ}C$ 0.4 8 0.2 0.0 6 8 10 12 IOH - High-Level Output Current - mA Figure 4 Figure 2 LOW-LEVEL OUTPUT VOLTAGE VS LOW-LEVEL OUTPUT CURRENT 2.7 Low-Level Output Voltage – V 2.4 2.1 T_A=125°C 1.8 T_A= 70°C T_A=25°C 1.5 T_A=0°C 1.2 Γ_Δ=-40°C 0.9 0.6 0.0 10 15 20 25 30 35 40 45 50 55 IOL - Low-Level Output Current - mA Figure 7 **OUTPUT IMPEDANCE** # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### TYPICAL CHARACTERISTICS Figure 10 Figure 11 Figure 12 #### DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE Figure 13 Figure 14 Figure 16 Figure 17 #### TYPICAL CHARACTERISTICS Figure 18 #### **VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE** Figure 20 #### **INVERTING LARGE-SIGNAL PULSE RESPONSE** Figure 22 #### **EQUIVALENT INPUT NOISE VOLTAGE** Figure 19 #### **VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE** Figure 21 #### **INVERTING SMALL-SIGNAL PULSE RESPONSE** Figure 23 # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### TYPICAL CHARACTERISTICS SHUTDOWN FORWARD #### SHUTDOWN SUPPLY CURRENT / OUTPUT VOLTAGE TEXAS INSTRUMENTS SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### PARAMETER MEASUREMENT INFORMATION Figure 29 #### **APPLICATION INFORMATION** #### driving a capacitive load When the amplifier is configured in this manner, capacitive loading directly on the output will decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 10 pF, it is recommended that a resistor be placed in series (R_{NULL}) with the output of the amplifier, as shown in Figure 30. Figure 30. Driving a Capacitive Load #### offset voltage The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage: Figure 31. Output Offset Voltage Model SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### **APPLICATION INFORMATION** #### general configurations When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 32). Figure 32. Single-Pole Low-Pass Filter If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier. Figure 33. 2-Pole Low-Pass Sallen-Key Filter # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### APPLICATION INFORMATION #### circuit layout considerations To achieve the levels of high performance of the TLV278x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following. - Ground planes It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance. - Proper power supply decoupling Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors. - Sockets Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation. - Short trace runs/compact part placements Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier. - Surface-mount passive components Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout, thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible. #### shutdown function Three members of the TLV278x family (TLV2780/3/5) have a shutdown terminal for conserving battery life in portable applications. When the shutdown terminal is tied low, the supply current is reduced to 900 nA/channel, the amplifier is disabled, and the outputs are placed in a high impedance mode. To enable the amplifier, the shutdown terminal can either be left floating or pulled high. When the shutdown terminal is left floating, care should be taken to ensure that parasitic leakage current at the shutdown terminal does not inadvertently place the operational amplifier into shutdown. # TLV2780, TLV2781, TLV2782, TLV2783, TLV2784, TLV2785, TLV278xA FAMILY OF 1.8 V HIGH-SPEED RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS WITH SHUTDOWN SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### APPLICATION INFORMATION #### general power dissipation considerations For a given θ_{JA} , the maximum power dissipation is shown in Figure 34 and is calculated by the following formula: $$\mathsf{P}_\mathsf{D} = \left(\frac{\mathsf{T}_\mathsf{MAX}^{-\mathsf{T}}\mathsf{A}}{\theta_\mathsf{JA}}\right)$$ Where: P_D = Maximum power dissipation of TLV278x IC (watts) T_{MAX} = Absolute maximum junction temperature (150°C) T_A = Free-ambient air temperature (°C) $\theta_{JA} = \theta_{JC} + \theta_{CA}$ θ_{JC} = Thermal coefficient from junction to case θ_{CA} = Thermal coefficient from case to ambient air (°C/W) # MAXIMUM POWER DISSIPATION vs FREE-AIR TEMPERATURE NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB. Figure 34. Maximum Power Dissipation vs Free-Air Temperature SLOS245E - MARCH 2000 - REVISED JANUARY 2005 #### APPLICATION INFORMATION #### macromodel information Macromodel information provided was derived using Microsim $Parts^{TM}$ Release 9.1, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 2) and subcircuit in Figure 35 are generated using TLV278x typical electrical and operating characteristics at $T_A = 25^{\circ}$ C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): - Maximum positive output voltage swing - Maximum negative output voltage swing - Slew rate - Quiescent power dissipation - Input bias current - Open-loop voltage amplification - Unity-gain frequency - Common-mode rejection ratio - Phase margin - DC output resistance - AC output resistance - Short-circuit output current limit NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974). Figure 35. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. 8-Sep-2017 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5)
| Samples | |------------------|---|--------------|--------------------|------|----------------|----------------------------|----------------------|---------------------------|--------------|-------------------------|---------| | TLV2780CDBVR | ACTIVE | SOT-23 | DBV | 6 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | VASC | Samples | | TLV2780CDBVT | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | PDAU Level-1-260C-UNLIM 0 | | VASC | Samples | | TLV2780CDBVTG4 | ACTIVE | SOT-23 | DBV | 6 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | VASC | Samples | | TLV2780IDBVR | VR ACTIVE SOT-23 DBV 6 3000 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 & no Sb/Br) | | -40 to 125 | VASI | Samples | | | | | | | | TLV2780IDBVT | VT ACTIVE SOT-23 DBV 6 250 Green (RoHS CU NIPDAU Level-1-260C-UNLIM -40 to 125 & no Sb/Br) | | -40 to 125 | VASI | Samples | | | | | | | | TLV2780IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | T2780I | Samples | | TLV2781CDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | VATC | Samples | | TLV2781CDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | VATC | Samples | | TLV2781CDBVTG4 | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | VATC | Samples | | TLV2781ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | T2781I | Samples | | TLV2781IDBVR | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | VATI | Samples | | TLV2781IDBVRG4 | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | VATI | Samples | | TLV2781IDBVT | ACTIVE | SOT-23 | DBV | 5 | 250 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | VATI | Samples | | TLV2781IDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | T2781I | Samples | | TLV2781IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | T2781I | Samples | | TLV2782AID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2782AI | Samples | | TLV2782CD | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 2782C | Samples | www.ti.com 8-Sep-2017 | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------------|--------------------|--------------|----------------------|---------| | TLV2782CDG4 | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 2782C | Sample | | TLV2782CDGK | ACTIVE | VSSOP | DGK | 8 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU
CU NIPDAUAG | Level-1-260C-UNLIM | 0 to 70 | ADL | Sample | | TLV2782CDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU
CU NIPDAUAG | Level-1-260C-UNLIM | 0 to 70 | ADL | Sample | | TLV2782CDGKRG4 | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAUAG | Level-1-260C-UNLIM | 0 to 70 | ADL | Samples | | TLV2782CDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 2782C | Samples | | TLV2782ID | ACTIVE | SOIC | D | 8 | 75 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 27821 | Samples | | TLV2782IDGK | ACTIVE | VSSOP | DGK | 8 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU
CU NIPDAUAG | Level-1-260C-UNLIM | -40 to 125 | ADM | Samples | | TLV2782IDGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU
CU NIPDAUAG | Level-1-260C-UNLIM | -40 to 125 | ADM | Samples | | TLV2782IDR | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 27821 | Samples | | TLV2782IP | ACTIVE | PDIP | Р | 8 | 50 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 125 | TLV2782IP | Samples | | TLV2783IDGS | ACTIVE | VSSOP | DGS | 10 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | ADO | Samples | | TLV2783IDGSG4 | ACTIVE | VSSOP | DGS | 10 | 80 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | ADO | Samples | | TLV2783IDGSR | ACTIVE | VSSOP | DGS | 10 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | ADO | Samples | | TLV2783IN | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 125 | TLV2783I | Samples | | TLV2784AID | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2784AI | Samples | | TLV2784AIDR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2784AI | Samples | | TLV2784CPWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 2784C | Samples | | TLV2784ID | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TLV2784I | Samples | www.ti.com #### PACKAGE OPTION ADDENDUM 8-Sep-2017 | Orderable Device | Status | Package Type | _ | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|----------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | TLV2784IDR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TLV2784I | Samples | | TLV2784IPW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 27841 | Samples | | TLV2784IPWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 27841 | Samples | | TLV2785AID | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2785AI | Samples | | TLV2785CPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 2785C | Samples | | TLV2785IN | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 125 | TLV2785I | Samples | | TLV2785INE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -40 to 125 | TLV2785I | Samples | | TLV2785IPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 27851 | Samples | | TLV2785IPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 27851 | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. ⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". ⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. ⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. #### PACKAGE OPTION ADDENDUM 8-Sep-2017 (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information
from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Aug-2017 #### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE *All dimensions are nominal | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter | | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|------|------|------------------|---------|------------|------------|------------|------------|-----------|------------------| | | | | | | (mm) | W1 (mm) | | | | | | | | TLV2780CDBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2780CDBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2780IDBVR | SOT-23 | DBV | 6 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2780IDBVT | SOT-23 | DBV | 6 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2780IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TLV2781CDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2781CDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2781IDBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2781IDBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 9.0 | 3.15 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | TLV2781IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TLV2782CDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | TLV2782CDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | TLV2782CDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TLV2782IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | TLV2782IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | TLV2782IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | TLV2783IDGSR | VSSOP | DGS | 10 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | TLV2784AIDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Aug-2017 | Device | | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TLV2784CPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | TLV2784IDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | TLV2784IPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | TLV2785CPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | TLV2785IPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | TLV2780CDBVR | SOT-23 | DBV | 6 | 3000 | 182.0 | 182.0 | 20.0 | | TLV2780CDBVT | SOT-23 | DBV | 6 | 250 | 182.0 | 182.0 | 20.0 | | TLV2780IDBVR | SOT-23 | DBV | 6 | 3000 | 182.0 | 182.0 | 20.0 | | TLV2780IDBVT | SOT-23 | DBV | 6 | 250 | 182.0 | 182.0 | 20.0 | | TLV2780IDR | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 38.0 | | TLV2781CDBVR | SOT-23 | DBV | 5 | 3000 | 182.0 | 182.0 | 20.0 | | TLV2781CDBVT | SOT-23 | DBV | 5 | 250 | 182.0 | 182.0 | 20.0 | | TLV2781IDBVR | SOT-23 | DBV | 5 | 3000 | 182.0 | 182.0 | 20.0 | | TLV2781IDBVT | SOT-23 | DBV | 5 | 250 | 182.0 | 182.0 | 20.0 | | TLV2781IDR | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | | TLV2782CDGKR | VSSOP | DGK | 8 | 2500 | 364.0 | 364.0 | 27.0 | | TLV2782CDGKR | VSSOP | DGK | 8 | 2500 | 358.0 | 335.0 | 35.0 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Aug-2017 | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | TLV2782CDR | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | | TLV2782IDGKR | VSSOP | DGK | 8 | 2500 | 364.0 | 364.0 | 27.0 | | TLV2782IDGKR | VSSOP | DGK | 8 | 2500 | 358.0 | 335.0 | 35.0 | | TLV2782IDR | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | | TLV2783IDGSR | VSSOP | DGS | 10 | 2500 | 358.0 | 335.0 | 35.0 | | TLV2784AIDR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | TLV2784CPWR | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | | TLV2784IDR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | TLV2784IPWR | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | | TLV2785CPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | TLV2785IPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | ## DBV (R-PDSO-G6) ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation. - Falls within JEDEC MO-178 Variation AB, except minimum lead width. # DBV (R-PDSO-G6) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. ## D (R-PDS0-G16) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. # D (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## D (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. # D (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G16) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G16) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## D (R-PDSO-G8) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. # D (R-PDSO-G8) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## P (R-PDIP-T8) ### PLASTIC DUAL-IN-LINE PACKAGE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Falls within JEDEC MS-001 variation BA. ## N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. DBV (R-PDSO-G5) ### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # DBV (R-PDSO-G5) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # DGK (S-PDSO-G8) ## PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. # DGK (S-PDSO-G8) ### PLASTIC SMALL OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # DGS (S-PDSO-G10) ## PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. - D. Falls within JEDEC MO-187 variation BA. #### IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY
INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.